Двойное оплодотворение примеры растений. Оплодотворение - что такое и как происходит? Двойное оплодотворение у цветковых. Оплодотворение у покрытосеменных растений


Растения - они такие загадочные. Ну всё у них не так, как у людей. Даже половые клетки они образуют не мейозом, а митозом, да еще и чередование поколений, да еще и оплодотворение двойное...
Впрочем, обо всём по порядку...

Вспомним строение цветка

У покрытосеменных растений процесс формирования половых клеток состоит из двух этапов: спорогенеза и гаметогенеза. Пыльца образуется в пыльниках тычинок. Микроспорогенез – процесс образования микроспор в микроспорангиях (гнезда пыльника), где в результате митозов возникают материнские клетки пыльцы, которые вступают в мейоз. После двух мейотических делений образуется 4 гаплоидные микроспоры– пыльцевые зерна. Пыльцевое зерно (пылинка) покрыто двумя оболочками. Затем внутри пыльцевого зерна происходит микрогаметогенез (процесс образования мужского гаметофита из микроспоры) – два последовательных митотических деления. В результате первого образуются вегетативная и генеративная клетки, а после второго деления из генеративной клетки образуются два спермия.

Макроспорогенез (процесс формирования мегаспор) происходит в семязачатках, которые расположены в завязи пестика (покрыты). В области микропиле начинает разрастаться одна клетка – мегаспороцит, или материнская клетка мегаспор. В ней происходит мейоз , и образуются 4 гаплоидные клетки. Одна из этих клеток развивается в зародышевый мешок, три остальных разрушаются. Далее начинается макрогаметогенез – формирование женского гаметофита. После трех митотических делений образуется восьмиядерный зародышевый мешок. Ядра в дальнейшем обособляются в самостоятельные клетки. Одна из этих клеток (яйцеклетка) с двумя клетками-синергидами располагается возле микропиле. Синергиды содержат ферменты, которые растворяют оболочку пыльцевой трубки и при необходимости могут заместить яйцеклетку. На противоположной части зародышевого мешка располагаются три клетки-антиподы (передатчики питательных веществ из семяпочки в зародышевый мешок). Две оставшиеся клетки сливаются и образуют крупную центральную диплоидную клетку. Зародышевый мешок имеет покровы.


Процессу оплодотворения предшествует процесс опыления. Попав на рыльце, пыльцевое зерно прорастает в пыльцевую трубку, в которой расположены два неподвижных спермия. Синергиды выделяют ферменты, разрушающие пыльцевую трубку, и ее содержимое изливается рядом с яйцеклеткой. Оплодотворение от воды не зависит. Двойное оплодотворение (С.Г. Навашин, 1898 г.): один спермий сливается с яйцеклеткой (образуется зигота), второй – с диплоидной центральной клеткой, образуя триплоидный эндосперм. Из зиготы далее развивается зародыш, покровы превращаются в семенную кожуру. Развивающееся семя защищено стенками завязи (околоплодник). На месте цветка созревает плод.

Двойное оплодотворение у растений имеет большое биологическое значение. Оно было открыто Навашиным в 1898 г. Далее рассмотрим подробнее, как происходит двойное оплодотворение у растений.

Биологическое значение

Процесс двойного оплодотворения способствует активному развитию питательной ткани. В связи с этим семяпочка не запасает вещества впрок. Это, в свою очередь, объясняет ее быстрое развитие.

Схема двойного оплодотворения

Коротко явление можно описать следующим образом. Двойное оплодотворение у покрытосеменных растений состоит в проникновении в завязь двух спермиев. Один сливается с яйцеклеткой. Это способствует началу развития диплоидного зародыша. Второй спермий соединяется с центральной клеткой. В результате формируется триплоидный элемент. Из этой клетки появляется эндосперм. Он является питательным материалом для развивающегося зародыша.

Развитие пыльцевой трубки

Двойное оплодотворение у покрытосеменных начинается после образования гаплоидного сильно редуцированного поколения. Оно представлено гаметофитами. Двойное оплодотворение цветковых растений способствует прорастанию пыльцы. Оно начинается с разбухания зерна и последующего формирования пыльцевой трубки. Она прорывает спородерму в наиболее тонком ее участке. Называется он апертура. С кончика пыльцевой трубки выделяются специфические вещества. Они размягчают ткани столбика и рыльца. За счет этого в них входит пыльцевая трубка. По мере ее развития и роста, в нее переходят оба спермия и ядро от вегетативной клетки. В подавляющем большинстве случаев проникновение пыльцевой трубки в нуцеллус (мегаспорангий) происходит посредством микропиле семязачатка. Крайне редко это осуществляется другим способом. После проникновения в зародышевый мешок происходит разрыв пыльцевой трубки. В результате все ее содержимое изливается вовнутрь. Двойное оплодотворение цветковых растений продолжается формированием диплоидной зиготы. Этому способствует первый спермий. Второй элемент соединяется с вторичным ядром, которое расположено в центральной части зародышевого мешка. Образованное триплоидное ядро впоследствии трансформируется в эндосперм.

Формирование клеток: общие сведения

Процесс двойного оплодотворения цветковых растений осуществляется особыми половыми клетками. Их формирование происходит в два этапа. Первая стадия называется спорогенез, вторая - гематогенез. В случае образования мужских клеток эти этапы именуются микроспорогенез и микрогематогенез. При образовании женских половых элементов приставка меняется на "мега" (или "макро"). Спорогенез основывается на мейозе. Это процесс формирования гаплоидных элементов. Мейозу, так же как и у представителей фауны, предшествует размножение клеток посредством митотических делений.

Образование спермиев

Первичное формирование мужских половых элементов осуществляется в особой ткани пыльника. Она называется археспориальной. В ней в результате митозов происходит формирование многочисленных эелементов - материнских клеток пыльцы. Они и вступают затем в мейоз. Вследствие двух мейотических делений образуется 4 гаплоидные микроспоры. Некоторое время они лежат рядом, формируя тетрады. После этого происходит их распад на пыльцевые зерна - отдельные микроспоры. Каждый из образованных элементов начинает покрываться двумя оболочками: внешней (экзина) и внутренней (интина). Затем начинается следующий этап - микрогаметогенез. Он, в свою очередь, состоит из двух митотических последовательных делений. После первого формируется две клетки: генеративная и вегетативная. Впоследствии первая проходит еще одно деление. В результате образуется две мужские клетки - спермии.

Макроспорогенез и мегаспорогенез

В тканях семяпочки начинает обособляться один или несколько археспориальных элементов. Они начинают усиленно расти. Вследствие такой активности они становятся значительно крупнее остальных клеток, окружающих их в семяпочке. Каждый археспориальный элемент один, два или более раз подвергается делению митозом. В некоторых случаях клетка может сразу трансформироваться в материнскую. Внутри нее происходит мейоз. В результате него формируется 4 гаплоидные клетки. Как правило, самая крупная из них начинает развиваться, превращаясь в зародышевый мешок. Три оставшиеся постепенно дегенерируют. На данном этапе макроспорогенез завершается, начинается макрогематогенез. В ходе него происходят митотические деления (у большей части покрытосеменных их три). Цитокинез не сопровождает митозы. В результате трех делений формируется зародышевый мешок с восемью ядрами. Они впоследствии обосабливаются в самостоятельные клетки. Эти элементы распределяются определенным образом по зародышевому мешку. Одна из обособленных клеток, которая, собственно, является яйцеклеткой, совместно с двумя другими - синергидами, занимает место у микропиле, в которое осуществляется проникновение спермиев. В этом процессе синергиды исполняют очень значимую роль. В них содержатся ферменты, которые способствуют растворению оболочек на пыльцевых трубках. В противоположной стороне зародышевого мешка располагаются другие три клетки. Они именуются антиподами. С помощью этих элементов происходит передача из семяпочки питательных веществ в зародышевый мешок. Оставшиеся две клетки располагаются в центральной части. Зачастую они сливаются. В результате их соединения формируется диплоидная центральная клетка. После того как произойдет двойное оплодотворение, и в завязь проникнут спермии, один из них, как выше сказано было, сольется с яйцеклеткой.

Особенности пыльцевой трубки

Двойное оплодотворение сопровождается взаимодействием ее с тканями спорофита. Оно достаточно специфично. Этот процесс регулируется активностью химических соединений. Установлено, что если пыльцу промыть в дистиллированной воде, она потеряет способность к прорастанию. Если же полученный раствор сконцентрировать, а затем ее обработать, то она снова станет полноценной. Развитие пыльцевой трубки после прорастания контролируют ткани пестика. К примеру, у хлопчатника ее рост до яйцеклетки занимает порядка 12-18-ти часов. Однако уже спустя 6 часов вполне можно определить, к какой именно семяпочке будет направляться пыльцевая трубка. Это понятно потому, что в ней начинается разрушение синергиды. В настоящее время не установлено, как растение может направить развитие трубки в нужном направлении и каким образом о приближении узнает синергида.

"Запрет" на самоопыление

Он достаточно часто наблюдается у цветковых растений. Это явление имеет свои особенности. "Запрет" на самоопыление проявляется в том, что спорофит "идентифицирует" собственного мужского гематофита и не допускает его к участию в оплодотворении. При этом в ряде случаев на рыльце пестика не происходит прорастания собственной пыльцы. Однако, как правило, рост трубки все-таки начинается, но впоследствии приостанавливается. В результате пыльца не достигает яйцеклетки и, как следствие, двойное оплодотворение не происходит. Еще Дарвиным было отмечено это явление. Так, он обнаружил у первоцвета весеннего цветки двух форм. Одни из них были длинностолбиковыми с короткими тычинками. Другие же - короткостолбиковыми. В них тычиночные нити были длинные. Короткостолбиковые растения отличаются крупной пыльцой (вдвое больше, чем у других). При этом клетки в сосочках рыльца - мелкие. Указанные признаки контролирует группа из тесно сплетенных генов.

Рецепторы

Двойное оплодотворение эффективно, когда пыльца переносится от одной формы к другой. За распознавание собственных элементов отвечают особые молекулы-рецепторы. Они представляют собой сложные соединения углеводов с белками. Установлено, что формы дикой капусты, не вырабатывающие в тканях рыльца эти молекулы-рецепторы, способны самоопыляться. Для нормальных растений характерно появление углеводно-белковых соединений за день до раскрытия цветка. Если открыть бутон и обработать его собственной пыльцой за двое суток до его распускания, то двойное оплодотворение произойдет. Если это сделать за день до открытия, то его не будет.

Аллели

Примечательно, что в ряде случаев "самонесовместимость" пыльцы в растениях устанавливается серией множественных элементов одного гена. Это явление похоже на несовместимость при пересадке ткани у животных. Такие аллели обозначают литерой S. Число в популяции этих элементов может достичь десятков или даже сотен. К примеру, если генотип растения, производящего яйцеклетки, - s1s2, а вырабатывающего пыльцу - s2s3, при перекрестном опылении прорастание будет отмечено только у 50% пылинок. Это будут те, которые несут аллель s3. Если элементов несколько десятков, то большая часть пыльцы прорастет нормально при перекрестном опылении, при этом самоопыление предотвращается полностью.

В заключение

В отличие от голосеменных, для которых характерно развитие достаточно мощного гаплоидного эндосперма вне зависимости от оплодотворения, у покрытосеменных ткань образуется только в этом единственном случае. Учитывая огромное количество поколений, таким образом достигается значительная экономия энергии. Повышение степени плоидности эндосперма, по всей видимости, способствует более скорому росту ткани в сравнении с диплоидными слоями спорофита.

Водоросли.Общая характеристика. Водоросли – растения, живущие преимущественно в воде. Тело их не расчленено на органы и ткани. Органы размножения одноклеточные. Это одни из древнейших представителей растительного мира. Водоросли бывают одноклеточными (хламидоионада, хлорелла), колониальные (носток) и многоклеточные (спирогира, ламинария,). Цитологические особенности:

Клетки покрыты клеточной стенкой. Характерно наличие хроматофоров , носителей окраски. Хроматофоры – органеллы, в которых происходит фотосинтез. Окраска зависит от глубины обитания водорослей: на большой глубине – буро-красные, ближе к поверхности – зеленые. В хроматофорах всех водорослей содержатся пиреноиды , они синтезируют крахмал.

Одноклеточные формы могут быть подвижными (со жгутиками) и неподвижными.

Также водоросли бывают прикрепленные (бентосные) и свободноплавающие (планктонные) Размножение: Вегетативное – новые водоросли образуются из обрывков нитей, кусков слоевищ и т.д. Бесполое – содержимое одной клетки (зооспорангия) делится многократно, образую новые подвижные клетки (зооспоры). Каждая из них дает начало новой особи. Половое размножение – широко распространено у водорослей. Формы полового процесса разнообразны: изогамия (♂ подвижна, ♀ подвижна, одинаковые по размеру), гетерогамия (♂ подвижна, ♀ подвижна, ♀ больше, чем ♂), оогамия (♂ подвижна, ♀ неподвижна, ♀ больше, чем ♂), конъюгация (сливается содержимое двух вегетативных клеток). Образовавшаяся зигота покрывается толстой клеточной стенкой, накапливает запасные питательные вещества и в состоянии покоя способна легка переносить неблагоприятные условия.

1 .Общая характеристика отдела Папоротниковые . За исключением нескольких родов все папоротники - равноспоровые. У них наблюдается смена поколений с преобладание спорофита над гаметофитом. Спорофит представлен многолетними корневищными травами с крупными, обычно перисто-рассеченными листьями, на нижней стороне которых расположены спорангии. В условия тропического климата встречаются древовидные папоротники. Листья папоротников нарастают верхушкой. То, что у папоротника напоминает лист - вовсе не лист, а по своей природе - целая система ветвей, да ещё расположенных в одной плоскости. Так это и называется - плосковетка, или вайя , или, ещё одно название, - предпобег. В спорангиях в результате мейоза образуются споры (n). Спорангии лопаются, споры высыпаются, прорастает заросток (гаметофит). Заростки представляют собой сердцевидную зеленую пластинку. Точка роста находится в выемке. От нижней стороны отходят ризоиды. На заростке образуются антеридии (в них образуются сперматозоиды) и архегонии (в ней образуется яйцеклетка). Во время дождя или обильной росы сперматозоиды проникают в архегонии и оплодотворяют яйцеклетку. Из зиготы развивается зародыш, затем взрослый спорофит. Современные папоротники насчитывают около 300 родов и 12 000 видов. Основные представители: Щитовник мужской, Страусник обыкновенный, Сальвиния плавающая (разноспоровая)

Опыление у покрытосемянных растений. Приспособление цветков к различным видам опыления. Микро- и макроспорогенез у растений Опыление – перенос пыльцы с тычинок на рыльца пестика. Различают самоопыление и перекрестное опыление. Самоопыление: пыльца опыляет рыльце пестика того же цветка (пшеница, ячмень, овес, просо, горох, фасоль, бобы, хлопчатник, лен, томат и др.) . Преобладает у 10% растений. Самоопыление происходит как у раскрывшихся цветков: сельдерейные, так и у закрытых: арахис, фиалка. Однако для эволюционного развития этот вид самоопыления не совершенен, т.к.не несет новых генетических признаков. Поэтому многие растения имеют приспособления, препятствующие самоопылению: Двудомность (♂ и ♀ цветки формируются на разных растениях) Однодомность (♂ и ♀ цветки формируются на одном растении, но в разных цветках) Дихогамия – разновременное созревание пыльцы и рыльца Гетеростилия – рыльца и тычиночные нити различаются по длине Самонесовместимость. Перекрестное опыление : пыльца опыляет рыльца других цветков. Различают 2 типа: гейтоногамия – опыление в пределах одного растения ксеногамия – опыление в пределах разных цветков (наиболее оптимально для эволюционного процесса) Различают несколько видов: Абиотическое – при помощи неживых факторов внешней среды Анемофилия (ветром)

Гидрофилия (водой)

Биотическое – с помощью животных.

Энтомофилия – опыление насекомыми Орнитофилия – опыление мелкими птицами (колибри)

Строение семязачатка. Двойное оплодотворение у покрытосеменных растений.

Строение семязачатка. Семязачаток состоит из центральной части - нуцеллуса и окружающих его одного или двух покровов - интегументов, которые над верхушкой нуцеллуса образуют небольшой канал - микропиле. Семязачаток сообщается с плацентой с помощью семяножки, или фуникулуса. Нуцеллус является аналогом макроспорангия, в котором развивается одна макроспора.Двойное оплодотворение было открыто С.Г.Навашиным в 1898 г. Оплодотворение у покрытосемянных принято называть двойным, т.к. оба спермия сливаются с клетками зародышевого мешка. Один сливается с яйцеклеткой, в результате образуется зигота. Второй сливается с центральным ядром, в результате образуется триплоидная клетка (3n). Прочие клетки зародышевого мешка дегенерируют. После двойного оплодотворения из зиготы развивается зародыш, а из триплойдной клетки – эндосперм (питательная ткань), из нуцеллуса образуется перисперм (дополнительная питательная ткань), из интегумента – семенная кожура, из семязачатка – семя, из завязи – плод. Преимущества двойного оплодотворения заключаются в том, что одновременно с зиготой формируется триплоидная клетка (3n), которая делится быстрее, чем зигота. Соответственно, эндосперм образуется быстрее, чем растет зародыш. Поэтому не нужно запасать питательные вещества до оплодотворения, в отличие от голосеменных, у которых довольно мощный гаплоидный эндосперм развивается до оплодотворения. Этим достигается существенная экономии я энергетических ресурсов организма. Семязачатки покрытосеменных, не обремененные запасающей питательной тканью впрок, развиваются гораздо быстрее, чем у голосеменных.

1 - покровы семязачатка, или интегументы (а - наружный, б - внутренний), 2 - микропиле, 3 - халаза, 4 - фуникулус, 5 - нуцеллус, 6 -зародышевый мешок, 7 - яйцеклетка, 8 - синергиды, 9 - антиподы, 10 - вторичное ядро, 11 - плацента, 12 - проводящий пучок. После оплодотворения из зиготы развивается зародыш, из центрального ядра – эндосперм, из нуцеллуса – перисперм, из интигументов – семенная кожура, из семязачатка – семя, из завязи – плод.

Высшие растения. Общая характеристика и цикл развития.

Высшие растения , или Наземные растения ,- тип зелёных растений, которым свойственна дифференциация тканей, в отличие от низших растений - водорослей. К высшим растениям относятся мхи и сосудистые растения (папоротникообразные, псилотовые,хвощевидные, плауновидные, голосеменные и покрытосеменные).

Развитие специализированных тканей было важным условием для выхода растений на сушу. Для комфортного существования в воздушной среде растениям было необходимо развить как минимум эпидермис с устьицами для защиты от высыхания и теплообмена и проводящие ткани для обмена минеральных и органических веществ. Результатом выхода растений на сушу также стало разделение организма растения на корень, стебель и лист.

В ЖЦ высших растений происходит чередование полового и бесполого способов размножения и связанное с этим чередование поколений. Бесполое поколение представлено спорофитом (2n), половое – гаметофитом (n). Спорофит – это растение, образующее споры. В многоклеточных спорангиях в результате мейотического деления формируются споры (n). Растения, у которых все споры одинаковые – равноспоровые, у более высокоорганизованных споры разной величины (микроспоры и мегаспоры) – это разноспоровые растения. Гаметофит – растение, образующее гаметы. Гаметы равиваются в многоклеточных органах полового размножения: яйцеклетки – в архегониях, сперматозойды – в антеридиях. Гаметофит вырастает из споры. У равноспоровых растений гаметофит обоеполый, у разноспоровых – однополый. В результате оплодотворения образуется зигота, из которой прорастает новый спорофит. Все высшие растения делятся на 2 группы по доминированию в ЖЦ гаметофита и спорофита: Растения с доминирующим гаметофитом – отдел Моховидные Растения с доминирующим спорофитом – все остальные

В целом для эволюции высших растений характерна тенденция к усложнению и усовершенствованию спорофита при одновременной редукции гаметофита.

Моховидные. Общая характеристика. Цикл развития мха Кукушкин лен. В отдел входит более 25 000 видов сравнительно просто организованных травянистых растений. В цикле развития преобладает гаметофит. У более примитивных форм он представлен талломом, а у остальных – расчленен не стебель и листья. Корней нет, из заменяют ризоиды. Спорофит самостоятельно не существует, развивается на гаметофите, получая от него воду и питательные вещества. Спорофит представляет собой коробочку, где развивается спорангий. Отдел делится на 3 класса: Антоцеротовые, Печеночные, Листостебельные мхи. Наиболее известен вид – Кукушкин лен (Класс Листостебельные мхи). Представляет собой прямостоячие стебли (15-20 см) густо покрытые жесткими острыми листьями. Прикрепляется к земле ризоидами. Гаметофиты раздельнополые. На верхушке мужских особей развиваются антеридии, окруженные красно-бурыми листьями (n), на верхушках женских – архегонии (n). Оплодотворение происходит подвижными двужгутиковыми сперматозоидами во влажную погоду. Из зиготы на верхушке женского гаметофита развивается спорофит (2n), имеющий вид коробочки на длинной ножке. Внутри коробочки – спорангий, где после мейоза образуются споры (n). После образования спор колпачок, а затем крышечка отделяются и споры высыпаются. Из споры сначала образуется протонема, на которой из особых почек формируются листостебельные побеги – гаплоидное поколение (n).


Общая хар-ка отдела Плауновидные. Цикл развития Плауна булавовидного. Плауновидные – очень древняя группа, возникшая в силуре, а в каменноугольном периоде достигла своего расцвета. Это были огромные деревья, образующие целые леса. В современной флоре они представлены вечнозелеными многолетними травами, реже полукустарниками. Около 1000 видов сохранилось. Плауновидные имеют мелкие листья с одной жилкой микрофильного типа. Выделяют 2 класса: равноспоровые Плауновые и разноспоровые Полушниковые. ^ Плаун булавовидный . В цикле развития преобладает спорофит (2n). Он представляет собой длинные стелющиеся ветвящиеся побеги густо усажены жесткими мелкими листьями. От стебля отходят тонкие придаточные корни. В середине лета на верхушках появляются спороносные колоски. Колосок состоит из оси и сидящих на ней листочков (спорофиллов). На верхней стороне спорофиллов находится спорангий на короткой ножке. В результате мейоза в нем образуются споры (n). Из спор развивается заросток (гаметофит) (n). Заросток развивается под землей. От нижней его части отходят ризоиды. Через них он врастает в грибы, образуя микоризу. Живет в симбиозе с грибом, питается от него. Растет очень долго (15-20 лет). На верхней стороне его образуется антеридий и архегонии. Двужгутиковый сперматозоид выходи из антеридия, проникает в архегоний и оплодотворяет яйцеклетку. В результате образуется зигота, из которой развивается новый спорофит.

Уникальная особенность цветковых растений - двойное оплодотворение.

В завязь покрытосеменных растений проникает два спермия, один из них сливается с яйцеклеткой, дав начало диплоидному зародышу. Другой соединяется с центральной диплоидной клеткой. Образуется триплоидная клетка, из которой возникнет эндосперм - питательный материал для развивающегося зародыша ( рис. 77). Этот процесс, характерный для всех покрытосеменных, открыт в конце прошлого века С.Г. Навашиным и получил название двойного оплодотворения. Значение двойного оплодотворения, по- видимому, заключается в том, что обеспечивается активное развитие питательной ткани уже после оплодотворения. Поэтому семяпочка у покрытосеменных не запасает питательных веществ впрок и, следовательно, развивается гораздо быстрее, чем у многих других растений, например у голосеменных.

У цветковых растений имеется ряд особенностей образования половых клеток и оплодотворения. Оплодотворению у них предшествует образование сильно редуцированного гаплоидного поколения - гаметофитов . После оплодотворения прорастание пыльцы цветковых растений начинается с разбухания зерна и образования пыльцевой трубки , которая прорывает спородерму в более тонком ее месте - так называемой апертуре. Кончик пыльцевой трубки выделяет специальные вещества, размягчающие ткани рыльца и столбика , в которые внедряется пыльцевая трубка. По мере роста пыльцевой трубки в нее переходят ядро вегетативной клетки и оба спермия . В огромном большинстве случаев пыльцевая трубка проникает в мегаспорангий ( нуцеллус) через микропиле семязачатка , реже - иным образом. Проникнув в зародышевый мешок , пыльцевая трубка разрывается, и ее содержимое изливается внутрь. Один из спермиев сливается с яйцеклеткой, и образуется диплоидная зигота, дающая затем начало зародышу . Второй спермий сливается со вторичным ядром, располагающимся в центре зародышевого мешка , что приводит к образованию триплоидного ядра, развивающегося затем в триплоидный эндосперм. Весь этот процесс получил название двойного оплодотворения. Он был впервые описан в 1898 г. выдающимся русским цитологом и эмбриологом С.Г.Навашиным. Прочие клетки зародышевого мешка - антиподы и синергиды в оплодотворении не участвуют и довольно быстро разрушаются.

Биологический смысл двойного оплодотворения весьма велик. В отличие от голосеменных , где довольно мощный гаплоидный эндосперм развивается независимо от процесса оплодотворения, у покрытосеменных триплоидный эндосперм образуется лишь в случае оплодотворения. С учетом гигантского числа поколений этим достигается существенная экономия энергетических ресурсов. Увеличение же уровня плоидности эндосперма до 3n, по-видимому, способствует более быстрому росту этой полиплоидной ткани по сравнению с диплоидными тканями спорофита .

Взаимодействие пыльцевой трубки гаметофита с тканями спорофита - сложный процесс, регулируемый химическими веществами. Так, выяснилось, что если промыть пыльцу дистиллированной водой, она теряет способность к прорастанию. Если сконцентрировать полученный раствор и обработать концентратом пыльцу, она вновь станет полноценной. После прорастания рост пыльцевой трубки контролируется тканями пестика. Например, у хлопчатника рост трубки до яйцеклетки занимает 12-18 ч, но уже через 6 ч можно установить, к какой семяпочке направляется пыльцевая трубка: в этой семяпочке начинается разрушение особой клетки - синергиды . Как растение направляет рост трубки в нужную сторону и каким образом синергида узнает о ее приближении, пока еще не известно.

Во многих случаях у цветковых растений существует "запрет" на самоопыление: спорофит "узнает" своего мужского гаметофита и не разрешает ему участвовать в оплодотворении. В некоторых случаях при этом собственная пыльца не прорастает на рыльце пестика. В большинстве же случаев рост пыльцевой трубки начинается, но затем останавливается и она не достигает яйцеклетки. Например, у первоцвета весеннего еще Ч.Дарвин обнаружил две формы цветков - длинностолбиковые (с длинным столбиком и короткими тычинками) и короткостолбиковые (столбик короткий, тычиночные нити длинные). У короткостолбиковых растений пыльца почти вдвое крупнее, а клетки сосочков рыльца мелкие. Все эти признаки контролируются группой тесно сцепленных генов.

Опыление эффективно только при переносе пыльцы с одной формы на другую. За распознавание своей пыльцы отвечают молекулы-рецепторы, представляющие собой сложные комплексы белков с углеводами. Показано, что растения дикой капусты , которые не вырабатывают в тканях рыльца молекул рецептора, могут самоопыляться. У нормальных растений рецепторы появляются на рыльце за день до открытия цветка. Если раскрыть бутон и нанести на него собственную пыльцу за два дня до распускания, то оплодотворение произойдет, а если за один день до распускания - то нет.

Интересно, что в некоторых случаях самонесовместимость пыльцы у растений определяется серией множественных аллелей одного гена, сходно с несовместимостью при пересадках тканей у животных. Эти аллели обозначаются буквой S, и число их в популяции может достигать десятков и даже сотен. Если, например, генотип производящего яйцеклетки растения - s1s2, а производящего пыльцу - s2s3, то прорастать при перекрестном опылении будут только 50% пылинок - те, что несут аллель s3. При наличии десятков аллелей большая часть пыльцы при перекрестном опылении нормально прорастает, а самоопыление полностью предотвращается.

Половое размножение покрытосеменных растений связано с цветком. В цветке, органе размножения, происходит созревание мужских и женских половых клеток (гамет), и их последующее слияние с образованием первой клетки дочернего организма.

Отличие полового размножения от вегетативного

Половое и вегетативное - два вида размножения покрытосеменных. При вегетативном размножении новые организмы возникают за счёт регенерации вегетативных органов (лист, корень, побег).

Цветок не относится к вегетативным, а является репродуктивным (лат. - reproductio – воспроизведение) органом. В нём при слиянии гамет образуется зигота, из которой впоследствии развивается зародыш нового растения.

Гаметы

Гаметы имеют существенное отличие от всех других клеток. Число хромосом в ядрах гамет в два раза меньше, чем в остальных клетках. Такой набор хромосом называется гаплоидным. Набор хромосом обычных клеток тела называется диплоидным.

Хромосомы содержат наследственную информацию о признаках организма. Дочерний организм имеет половину хромосом от мужской гаметы и столько же от женской.

Тычинки и пестики

На тычинках развивается пыльца. Пыльца содержит генеративную клетку, которая, делясь, образует две мужские гаметы, называемые спермиями.

ТОП-4 статьи которые читают вместе с этой

Женская гамета, или яйцеклетка, вместе с сопутствующими ей клетками находится внутри завязи пестика, в полости зародышевого мешка.

Рис. 1. Зародышевый мешок.

Опыление

Опыление - это процесс переноса пыльцы на рыльце пестика, который осуществляется с помощью ветра, воды, насекомых и некоторых других животных. Человек может и сам, целенаправленно, вручную производить опыление растений.

Пыльца на пестик может попадать с других цветков, а может с тычинок этого же цветка.

💡

С помощью ручного опыления можно повышать урожайность и выводить множество новых сортов растений.

Рис. 2. Ручное опыление.

Двойное оплодотворение

После опыления спермии продвигаются в зародышевый мешок. Это происходит с помощью пыльцевой трубки, которая является неполовой клеткой пыльцы. Пыльцевая трубка быстро растёт (35 мм/час) в направлении яйцеклетки, и с ней продвигаются спермии.

Спермии бывают различной формы и не имеют жгутиков. Когда пыльцевая трубка достигает яйцеклетки, один спермий соединяется с ней, а другой с центральной клеткой зародышевого мешка.

В итоге, при двойном оплодотворении у покрытосеменных растений происходит образование следующих клеток:

  • первый спермий + яйцеклетка = зигота;
  • второй спермий + центральная клетка = эндосперм.

Зигота впоследствии делится и превращается в зародыш. Эндосперм служит для зародыша источником питательных веществ. Вместе, зародыш и эндосперм, образуют семя.

Рис. 3. Схема двойного оплодотворения.

Зародыш

Зародыш покрытосеменных растений - это зачаточный дочерний организм, который находится в семени в состоянии покоя, пока семя не начало прорастать. Набор хромосом у зародыша, как и у зиготы, диплоидный.

Семя с зародышем созревает, в эндосперме накапливаются питательные вещества. Завязь пестика разрастается и превращается в плод.

Что мы узнали?

Изучая в 6 классе половое размножение покрытосеменных, мы должны понимать какие особенности характерны для этих растений. Главная особенность покрытосеменных - это наличие цветка. В цветке образуются и развиваются гаметы. Покрытосеменные размножаются семенами. Семя образуется в результате полового процесса, который у цветковых заканчивается двойным оплодотворением.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 379.